O.P.Code: 23EC0402

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Regular Examinations February-2025 ELECTRONIC DEVICES AND CIRCUITS

ELECTRONIC DEVICES AND CIRCUITS				
Time: 3 Hours (Electronics & Communications Engineering)				
-		Max.	Mar	ks: 70
	(Angree all the PART-A			
	(Answer all the Questions $10 \times 2 = 20$ Marks) 1 a Define clipper and list types.			
	- same support and fist types.	CO4		2M
	and brode current equation.	CO2	L1	
	- The Diaw is Symbol.	CO1	Li	
	Tr	CO1	L1	2M
	to the trains conductance gm III a DJ 1?	CO2	L1	2M
	approductions of CC amplifier.	CO1	L1	2M
	g Define Pinchoff Voltage. h Draw the CMOS structure	CO2	L1	2M
	The Carlott State Carlotte C.	CO ₁	L1	2M
	i List the small-Signal Parameters of MOSFET.	CO ₁	L1	2M
	j Draw an alternative representation of the T model.	CO5	L1	2M
	PART-B			
	(Answer all Five Units $5 \times 10 = 50$ Marks)			
-	UNIT-I			
2	and leverse resistances of a PN function diode	CO1	L2	5M
	o Calculate the forward resistance of a PN Junction Diode when the	CO3	L3	5M
	forward current is 5mA at $T = 300 \text{ K}$. Assume Silicon diode.			DIVE
- 2	OR			
3	a Define the basic principle of Varactor diode and list its applications.	CO1	L1	3M
	b Draw the circuit symbol of Tunnel diode, Explain the VoltAmpere (V-I)	CO ₂	L2	7 M
	characteristics.			
	UNIT-II			
4	a Derive the relation among α , β and Υ of a Transistor.	CO ₂	L2	5M
	b If the base current in a transistor is 20uA when the emitter current is	CO3	L3	5M
	0.4mA, what are the values of α and β? Also calculate the collector			SIVE
	current.			
_	OR			
5	a Differentiate among CE, CB & CC configurations.	CO4	L2	5M
	b Discuss the Input and Output characteristics of a BIT in CE	CO4	1.3	5M
	configuration. Indicate the regions of operations in the output			SIVE
	characteristics.			
	UNIT-III			
6	a Derive the transconductance gm for a given collector current IC.	CO2	Ta	E3 //
	b Determine base current and input resistance at Base of BJT.		L2	5M
	OR	CO1	L3	5M
7	For the common emitter amplifier shown in figure $Vcc = 9V$, $R1 = 27 \text{ k}\Omega$	CO2	т 4	103 /
	R2 = 15 kΩ, R _E =1.2 kΩ and Rc = 2.2 kΩ. The transistor has β =100,	CO ₃	L4	10M
	VA=100 V. Calculate the DC bias current I _E . If the amplifier operates			
	between source for which Rsig = 10 k Ω and a load of 2 k Ω , replace the			
	transistor with its hybrid π model, and Compute the values of Rin,			
	Volatge gian Vo/Vsig.			

8 a Discuss the Transfer and output characteristics of N-channel JFET with CO4 L6 5M neat sketches.

b Distinguish between Depletion MOSFET and Enhancement MOSFET. CO6 L5 5M

OR

9 a Distinguish between BJT and FET. CO6 L2 5.

b Design the circuit in Fig. below to obtain a current ID of 80 μ A. Find the value required for R, and find the dc voltage VD. Let the NMOS transistor have Vt = 0.6 V, μ nCox = 200 μ A/V² .L = 0.8 μ m, and W = 4 μ m. Neglect the channel-length modulation effect (i.e., assume λ = 0).

10 a Explain the separating the DC Analysis and the Signal Analysis

CO4 L2 5M CO5 L3 5M

C₀5

L1

5M

 V_{DD} V_{DD} V_{DD} V_{DS} V_{DS} V_{DS} V_{DS}

For the above amplifier, let V_{DD} = 5V, R_D = 10K Ω , V_t = 1V, K'_n = 20 μ A/V², W/L = 20, V_{GS} =2V, and λ = 0. Determine

- i) the dc current I_D and dc voltage V_{DS}
- ii) g_m
- iii) Voltage gain iv)If $V_{GS} = 0.2 \sin wt$, find V_{DS}

OR

- 11 a Define the MOSFET Transconductance gm with mathematical CO3 L1 3M expression.
 - b Develop and Illustrate the T Equivalent-Circuit Model for the MOSFET. CO5 L5 7M